6.5094: Deep Learning for Self-Driving Cars

Recurrent Neural Networks for Steering Through Time
cars.mit.edu
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*  Website: cars.mit.edu

e  Email: deepcars@mit.edu

e Tasks:

* Create an account on the website.

Submit code online for DeepTrafficlS that exceeds 65mph

* Submit code online for DeepTeslalS (no performance
requirement)

* Fill out “Deep Thoughts” in your “Edit Profile” page
* Shirts: Handed out at the end of class on Friday

* DeepTraffic Competition:

* Leaderboard shuts down Friday 11am

Winners announced and congratulated on Friday

DeepTraffic Leaderboard

epTraffic - AL eepTraftl

Administrative

deep learning
for self-driving cars
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Flavors of Neural Networks

one to one one to many many to one many to many many to many

| . .

e Recurrent Neural Networks
Vanilla

Neural
Networks
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Back to Basics: Backpropagation

forward pass - Supervised Learning
> log probabities (correct label is provided)
-1.2 | -0.36
. block of differentiable compute .
mEge (e.g. neural net) i Sl
1.0 0

A

backward pass

Adjust the weights to reduce the error:

—a /W) = (error term of the output layer)

(compute gradient) 83 =aB® —y

@ (1 @ QX
Q O —~ Input x O Q ‘7 SBut?« target y
Input x O—> \ output y \\Q
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(error term of the hidden layer)
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Backpropagation: By Example

f(z,y,2) = (x + y)z

Modularity: We compute an arbitrary function locally in stages

=T+ Y f=gqz
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Backpropagation: Forward Pass

f(z,y,2) = (x + y)z

x 2 Forward pass in blue
3 Backward pass in red
+
5
y £ -12
* >
z -4

f(x, y, z) is “happy” when the output is as high as possible

How do we “teach” it to produce a higher output?
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Backpropagation: Forward Pass

f(z,y,2) = (x + y)z

x -2 Forward pass in blue
Backward pass in red

Y

f -12
* >

1

f(x, y, z) is “happy” when the output is as high as possible

How do we “teach” it to produce a higher output?
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Backpropagation: By Example

Addition:

of of
T,y) =T+ — o =1 = =1
f(z,y) y pom 9y
Multiplication:
of of
T =T — — = ==
flz,y) ==y 5 Y 9y
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Backpropagation: Backward Pass

Forward pass in blue
Backward pass in red

Let’s compute the local gradient on f:

of _ of _
% e d
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Modular Magic: Chain Rule

of 8]‘ 8q
or (9q or

So, instead of computing the gradient of this:
f(z,y,2) = (2 +y)z

We compute the gradients of these:

=T+ Y f=gqz
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Backpropagation: Backward Pass

Forward pass in blue

. Modular Magic: Chain Rule
Backward pass in red

of  Of Oq

) —_—
X ox 0q Ox

4+1=-4 3

+

y 5 B

4+1=-4 f 12

* >
1
, -4
3

Let’s compute the local gradient on g:

. _ X _q

Oox oy
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Forward pass in blue
Backward pass in red

Interpreting Gradients

Modular Magic: Chain Rule

2 of _ 0f g
Arl=4 g 3 0r  Oq Oz
4
y S
4+1=-4 f 12
* >
1
. -4
3

If we want to increase f, we should:

* Decrease q
* Decrease x
* Decreasey
* Increasez

* Note the beautiful simplicity:
Every local gradient is a local worker in a global chase for greater f.

ssachusetts R f . 101 Course 6.5094: Lex Fridman: Website:
ererences: [ ] Deep Learning for Self-Driving Cars fridman@mit.edu cars.mit.edu

?s=
S28
- ]

January
2017



Forward pass in blue

sackward pussinred INtErpreting Gradients

Modular Magic: Chain Rule

- of _ 0f g

-4+1=-4 .
\a ? Oz dq Ox
-4
y S
f -12
-4x1=-4 * >
1
z -4
3
Add gate: Multiply gate:
* Equally distributes the gradient * Switch forward pass values
from output to input * Multiply by gradient on output

* Ignores forward pass values

I m - :“aﬁafhuje“s Ref - 1101 Course 6.5094: Lex Fridman: Website:
I I Tnshln‘:)l?);y ererences: [ ] Deep Learning for Self-Driving Cars fridman@mit.edu cars.mit.edu

January
2017



Forward pass in green
Backward pass in red

Interpreting Gradients

x 3.00

_10.00 /%> -20.00
2.00 1.00

Add gate: Multiply gate: Max gate:
* Equally distributes the * Switch forward pass values * Distributes the gradient from
gradient from output to input * Multiply by gradient on output to just one input (the
* Ignores forward pass values output one with the largest forward
pass value)
Lex Fridman: Website: January
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Forward pass in green
Backward pass in red

Interpreting Gradients

x 3.00

_10.00 /%> -20.00
2.00 1.00

Add gate: Multiply gate: Max gate:
* Equally distributes the * Switch forward pass values * Distributes the gradient from
gradient from output to input * Multiply by gradient on output to just one input (the
* Ignores forward pass values output one with the largest forward
pass value)
Lex Fridman: Website: January
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Modularity Expanded: output

Sigmoid Activation Function

f(w,z) = .

— 1 n e—(woa:o-i-wlml-i-wg)

0.5 4

-

0  activation

1.00 0.37 1537 0,73
,,,,, (exp) (41 )18 (G50
0.20 v -0 U -0.5 U 1.00
do(x)
Side note, the derivative of the sigmoid function simplifies to: dxz = (1 - U(CU)) 0(3’3)
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Learning with Backpropagation

Task: Update the weights and biases to decrease loss function

(y — a)?

=a2Z) C = 5

Subtasks:
1. Forward pass to compute network output and “error”
2. Backward pass to compute gradients

3. Afraction of the weight’s gradient is subtracted from the weight.

1

Learning Rate

Loss (aka cost, objective) function:

mmm  Massachusetts Course 6.5094: Lex Fridman: Website:
i st of References: [103]
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Learning is an Optimization Problem

Task: Update the weights and biases to decrease loss function

25

\ 25 \\
!
\ / \ /
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\ / %
\ / \
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5 \\ /// 5 \\\ /
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Weight 1 Weight 1
Use mini-batch or stochastic gradient descent.
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Optimization is Hard: Vanishing Gradients

sigmoid function derivative of sigmoid
1.0} 1.0}
0.8 |- 0.8} SR RO s,
derivative is zero at tails
0.6 |- 0.6} : :
0.4 |- 0.4}
0.2 | 0.2 ———_/\— .
0.0 |- 0.0} :
-10 -5 0 5 10 -10 -5 0 5 10

Partial derivatives are small = Learning is slow

I - m:tsif:f:gfe“s Ref - 1102 Course 6.5094: Lex Fridman: Website: Januar
II Technology ererences: [ ] Deep Learning for Self-Driving Cars fridman@mit.edu cars.mit.edu 2017



Optimization is Hard: Dying RelLUs

RelLU function derivative of RelLU
0 1.0 ‘ ‘ T
8t 1 0.8
6 o6 | derivative exaqtly zero here
4 0.4
2 0.2
0 0.0
-10 -5 0 5 10 -10 -5 0 5 10

 If a neuron is initialized poorly, it might not fire for
entire training dataset.

* Large parts of your network could be dead RelLUs!

Refe rences: [102] Course 6.5094: Lex Fridman: Website:
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Optimization is Hard: Saddle Point

—  SGD
- Momentum
= NAG
- Adagrad
Adadelta
4 Rmsprop
2
0
-2
-4
1.0
-1.5
Hard to break symmetry
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Learning is an Optimization Problem

T ST R, g

SGD
Momentum
NAG

Adagrad
Adadelta
Rmsprop

rrrrrrrrr g

Takeaway: Vanilla SGD gets your there, but is slow sometimes.
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Reflections on Backpropagation

* Pause to reflect: Backpropagation and gradient descent is the
mechanism of machine intelligence. Can it lead to “human-level
reasoning”?

* Some alternatives:
* Genetic Algorithms
* Particle Swarm Optimization
* Ant Colony Optimization

° Q]_: What Other Ways can we Optimize Corucci et al. “Evolving swimming
. soft-bodied creatures.” 2016.
the weights of a neural network?

* Q2: What other ways can we optimize
(evolve) the design of the network?

I 2R assachusetts Ref - 1105. 106 Course 6.5094: Lex Fridman: Website: January
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Back to Recurrent Neural Networks (RNNs)

one to one one to many many to one many to many many to many

I I
I
e Recurrent Neural Networks
Vanilla

Neural

Networks RNN’s are amazing. But tricky to train.
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Unrolling a Recurrent Neural Network

0

O Ot-l 0 Ot+1
1w 11 o

A
SOD W Ot 1 Ot O t+
Unfold T W T W W

U U U U

X X x X

* Input (x): (example: word of a sentence)

Memory — * Hidden state (s): function of previous
hidden state and new input

e Output (0): (example: predict next word
in the sentence)

I N Massachusetts
I I Institute of
Technology
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RNN Observations

0
O Of—l 0 0t+l
A
. W v s v s VTS
S w t—1 t t+
O:} :> >O >O—>O—>
A Unfold T w T w w
U U U U
X X X, x

t—1 t+1

 Parameters U, V, W are shared across time
e Similar to CNNs: this reduces the # of parameters we need to optimize
* And it allow us to process arbitrary “temporal size” of input

* Process is the same for any input / output mapping:

gl 0 OO0 0o
) 00 BR0H Bt
I Juf oot 11
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Backpropagation Through Time (BPTT)

(Fancy name for regular backpropagation on an unrolled RNN)

Ey Eq Eo Es Ey
8E3
831 889 833
(98() (981 082
Lo L1 L2 L3 Lq
sigmoid function derivative of sigmoid
. o8 derivative is zer il . . o . o
e as o Saturating Neurons with Vanishing Gradients:
a5 _w Zero-ish gradients drives gradients in earlier layers to zero.
mmm Mas: setts . Course 6.5094: Lex Fridman: Website: January
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Gradients Can Explode or Vanish

0
O O-1 % Oss1
A A A
V vV V vV
s i w i 3 t+1
d» —)—05~>05~>0%~
w W W
T Unfold A A
U U U U
~ P » Xiel
H=5 # dimensionality of hidden state
I =56 _# number of time steps ) ) . . i
[ Whh = np.random. randn(H,H) if the largest eigenvalue is > 1, gradient will explode

if the largest eigenvalue is < 1, gradient will vanish

forward pass of an RNN (ignoring inputs x)
hs = {}
ss = {}
hs[-1] = np.random.randn(H)
for t in xrange(T):

ss[t] = np.dot(whh, hs[t-1])
hs[t] = np.maximum(@, ss[t])
# backward pass of the RANN
dhs = {}
dss = {}

dhs[T-1] = np.random.randn(H) # start off Athe chain with random gradient
for t in reversed(xrange(T)):
dss[t] = (hs[t] > @) * dhs[t] # bgfkprop through the nonlinearity
dhs[t-1] = np.dot(Whh.T, dss[t]) # backprop into previous hidden state

I 2R assachusetts Ref - 1102. 107 Course 6.5094: Lex Fridman: Website: January
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Gradients Can Explode or Vanish
(Geometric Interpretation)

Error surface for single hidden unit RNN
Lt = wa(:ct_l) -+ b

] !
0.39
w_ 10.30
I——— ! o
= 0.20 &
L Q
0.1
4.6 '0.10
L 4. '0.05
/(/O
Or 2 5 5 =20
5.4 — -2.4 % '
% -2.8 26 e ofb
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RNN Variants: Bidirectional RNNs

(Shallow) (Deep)

* Example: B hh
 Filling in missing words \

* Deeper = . .
* more learning capacity
* but needs lots of training data

I 2R assachusetts Ref - 1107 Course 6.5094: Lex Fridman: Website: January
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Long-Term Dependency

O®>??

56 4 & ¢

e Short-term dependence:
Bob is eating an apple.

.
L

v

B
L

* Long-term dependence:

Context —> Bob likes apples. He is hungry and decided to
have a snack. So now he is eating an apple.

@ @ @ ? @ In theory, vanilla RNNs
T T T T T can handle arbitrarily
A — AM— A » A — A — A long-term dependence.
é é é é@ é In practice, it’s difficult.
EEEE{{EEE References: [109] Course 6.5094: Lex Fridman: Website: January
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Long Short Term Memory (LSTM) Networks

Vanilla RNN: @Ta ® 6?

LSTM: ® ?

A E;‘f:A

&) Q) &)
1 O —/ > <<

Neural Network Pointwise Vector
Layer Operation Transfer

Concatenate Copy
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LSTM: Gates Regulate

Vanilla RNN: @TD ® 01}9

LSTM:

¢ o ®
A [T A

&) Q) &)
1 O —/ > <<

Neural Network Pointwise Vector

Layer Operation Transfer CRDERHENETR Copy

n:sf:‘:hgfeﬁs R f . 109 Course 6.5094: Lex Fridman: Website: January
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LSTM: Pick What to Forget and What To Remember

CJ O — > I
Neural Network Pointwise  Vector 1 ionate Copy @ @ @
Layer Operation Transfer T A T
\
X S >
@G>
A b A
(0] (o]
>
| T
&) ©, &)

Bob and Alice are having lunch. Bob likes apples. Alice likes oranges.
She is eating an orange.

Conveyer belt for previous state and new data:
1. Decide what to forget (state)
2. Decide what to remember (state)

3. Decide what to output (if anything)

mmm  Massachusetts Course 6.5094: Lex Fridman: Website: Januar
||||| Institute of References: [109] 5 t od
Technology
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LSTM Conveyer Belt

 State run through the cell

* 3 sigmoid layers output deciding which
information is let through (~1) and
which is not (~0)

I - m:ﬁa::g?eﬂs Ref - 1109 Course 6.5094: Lex Fridman: Website: Januar
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LSTM Conveyer Belt

Ji fi=0 Wy lhi—1,2:] + by)

hi—1

Tt

Step 1: Decide what to forget / ignore

Course 6.5094: Lex Fridman: Website: Januar
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LSTM Conveyer Belt

it =0 (Wi-lhi—1,2¢] + b;)
C; = tanh(We-[hi—1,2¢] + bc)

Step 2: Decide which state values to update (w/
sigmoid) and what values to update with (w/ tanh)

R f . 109 Course 6.5094: Lex Fridman: Website: Januar
ererences: [ ] Deep Learning for Self-Driving Cars fridman@mit.edu cars.mit.edu 2017
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LSTM Conveyer Belt

ftT ZT->C§ Cy = fi* Ci_q +iy % Cy

Step 3: Perform the forgetting and
the state update

oooooooooo

Ref - 1109 Course 6.5094: Lex Fridman: Website: Januar
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LSTM Conveyer Belt

1

Gop> o =0 (Wy [ he—1,2¢] + bo)
hi = o4 * tanh (C})

Step 4: Produce output with tanh [-1, 1] deciding
the values and sigmoid [0, 1] deciding the filtering

Ref - [109 Course 6.5094: Lex Fridman: Website:
eferences: [ ] Deep Learning for Self-Driving Cars fridman@mit.edu cars.mit.edu
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Application: Machine Translation

oy

Xy

X3

vy

Awesome sauce
Y1 2]

XX =N

XY=

(e00®®

oxxx

S

(0000

S

Echt

dicke

I I I N Massachusetts

I s References: [107]
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Application: Handwriting Generation from Text

Text --- up to 100 characters, lower case letters work best

InPUt: Deep Learning for Self Driving Cars
output: Deep Lears, ng
][O v S@ZT["DV {'(//‘nj Co/rg
Outputs

Hidden Layers

Alex Graves. "Generating
sequences with recurrent neural
networks." (2013).

Inputs

I m - m:ﬁaf:g?e“s Ref . 133 Course 6.5094: Lex Fridman: Website:
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Application: Character-Level Text Generation

target chars: “e” g i 7 “0” .
arget chars Life Is About The Weather!
;g gg g; 2% Life Is About The True Love Of Mr. Mom
output layer | ‘ ' 5 Life Is About Kids
-3.0 -1.0 1.9 -0.1
4.1 12 1.1 2.2 Life Is About An Eating Story
Life Is About The Truth Now
W_hy
0.3 1.0 0.1 |w hnl-0.3
hidden layer | -0.1 » 0.3 » 05— 0.9
0.9 0.1 -0.3 0.7 _ o
The meaning of life is
T T T TW—Xh literary recognition
. (1) (1) 8 8 The meaning of life is
input layer g 0 1 1 the tradition of the ancient human
0 0 0 0 reproduction
input chars: “h” “e” - o i
Andrej Karpathy. “The Unreasonable Effectiveness
of Recurrent Neural Networks." (2015).
W mm  Massachusetts ourse 6.5094: ex Fridman: ebsite: anuar
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Application: Image Question Answering

COCOQA 33827

What is the color of the cat?
Ground truth: black
IMG+BOW: black (0.55)
2-VIS+LSTM: black (0.73)
BOW: gray (0.40)

COCOQA 33827a

What is the color of the couch?
Ground truth: red

IMG+BOW: red (0.65)
2-VIS+LSTM: black (0.44)
BOW: red (0.39)

DAQUAR 1522

How many chairs are there?
Ground truth: two
IMG+BOW: four (0.24)
2-VIS+BLSTM: one (0.29)
LSTM: four (0.19)

DAQUAR 1520

How many shelves are there?
Ground truth: three
IMG+BOW: three (0.25)
2-VIS+BLSTM: two (0.48)
LSTM: two (0.21)

Image ADE#UU% Linear
CNN

21 56 - .09 .01
One Two Red Bird
‘ Softmax © @ - O O ‘
!LS|TMH [ — — — [
| Word Embedding |
“How™ “mz}ny” “boI)ks“
t=1 t=2 t="T

COCOQA 14855

Where are the ripe bananas sitting?
Ground truth: basket

IMG+BOW: hasket (0.97)
2-VIS+BLSTM: basket (0.58)

BOW: bowl (0.48)

COCOQA 14855a

What are in the basket?
Ground truth: bananas
IMG+BOW: hananas (0.98)
2-VIS+BLSTM: bananas (0.68)
BOW: bananas (0.14)

DAQUAR 585

What is the object on the chair?
Ground truth: pillow
IMG+BOW: clothes (0.37)
2-VIS+BLSTM: pillow (0.65)
LSTM: clothes (0.40)

DAQUAR 585a

Where is the pillow found?
Ground truth: chair
IMG+BOW: bed (0.13)
2-VIS+BLSTM: chair (0.17)
LSTM: cabinet (0.79)

Ren et al. "Exploring models and data for image

guestion answering." 2015.

Code: https://github.com/renmengye/imageqa-public

I Hmm Massachusetts
I I Institute of
Technology

References: [40]
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Application: Image Caption Generation

A purple camera with a woman. 3
A woman holding a camera in a crowd.

A woman holding a cat. _J

a man sitting on a couch with a dog
a man sitting on a chair with a dog in his lap

#1 A woman holding a
camera in a crowd.

J

dog (1.00) man {0.93) sitting (0 83) couch (0.66)

m = Massachusetts . Course 6.5094: Lex Fridman: Website:
IIIII }Zif,',',‘:,'.f,;’,', References' [43 - Fang et al' 2015] Deep Learning for Self-Driving Cars fridman@mit.edu cars.mit.edu
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Application: Video Description Generation

Correct descriptions. Relevant but incorrect
descﬂpﬁons.

Y i
S2VT: A small bus is running into a building.

S2VT: A man is cutting a piece of a pair of a paper.

Venugopalan et al.
"Sequence to sequence-video to text." 2015.

[ s |+ tsm || s |+ sm o] s LA s |of s A s | s |
v

2 i/ talzng s Code: https://vsubhashini.github.io/s2vt.html
L JL J
Encodir:g stage Decodir:g stage time
m = Massachusetts . Course 6.5094: Lex Fridman: Website: January
I II ':-:2:::3?,:; Refe rences: [41I 42] Deep Learning for Self-Driving Cars fridman@mit.edu cars.mit.edu 2017
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Application: Modeling Attention Steering

Jimmy Ba, Volodymyr Mnih, and Koray
Kavukcuoglu. "Multiple object recognition
with visual attention." (2014).

Course 6.5094: Lex Fridman: Website: January
Deep Learning for Self-Driving Cars fridman@mit.edu cars.mit.edu 2017




Application: Drawing with Selective Attention

Reading Writing
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Gregor et al. "DRAW: A recurrent neural network for image generation." (2015). Code: https://github.com/ericiang/draw

Course 6.5094: Lex Fridman: Website: January
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Application: Adding Audio to Silent Film

0.5
-0.5 ‘
13.50 13.75 14.00 14.25
7 Predicted soundtrack
Silent video
3
Owens, Andrew, Phillip Isola, Josh McDermott, = = =
Antonio Torralba, Edward H. Adelson, and William T. g{
My 7° . n | \ AN \ b,
Freeman. "Visually Indicated Sounds." (2015). N = &=
e
g >
IIIiI- EE‘:‘Z‘Z‘EE’?m ReferenceS: [28I 29] EZ:;Sieirsr?i::for Self-Driving Cars :reigrl;rai:rt@;?i:t.edu \clztre:frilti(te.:edu Jzi)nll;ary



Application: Medical Diagnosis

P
—

Targets Targets J

* Input: patients electronic
health record (EHR) data over
multiple visits (meaning,
variable length sequences)

W%HHM

F

[ Targets
-’132

| e QOutput: 128 diagnoses

= ) | -’Bs ) 4 5 1‘6
Top 6 diagnoses measured by F1 score

Label FlI AUC Precision Recall
Diabetes mellitus with ketoacidosis 0.8571 0.9966 1.0000 0.7500
Scoliosis, idiopathic 0.6809 0.8543 0.6957 0.6667
Asthma, unspecified with status asthmaticus 0.5641 0.9232 0.7857 0.4400
Neoplasm, brain, unspecified 0.5430 0.8522 04317 0.7315
Delayed milestones 0.4751 08178 0.4057 0.5733
Acute Respiratory Distress Syndrome (ARDS) 04688 0.9595 0.3409 0.7500

Lipton et al. "Learning to diagnose with LSTM recurrent neural networks." (2015).

Illll ;:,“, o References: [115]
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Application: Stock Market Prediction

DBN

RNN-RBM

Table 3. Test error rates for stock price prediction

RNN-RB
Brands Baseline SVM DBN M+ DBN
:'vke':'gc 4957 4873 4550  43.62
Hitachi 3571 3729 32.00 32.00
Toshiba 39.52 41.95 38.50 38.50
Fujitsu 40,00 4025 32.00 34.00
Sharp 42.00 47.88 40.00 40.00
Sony 43.00 4746 4143 40.95
Nissan Motor 40,00 4534 39.50 37.00
Toyota Motor 4429 5339 4381 42.38
Canon 4381 5339 43.00 39.11
Mitsui 46.96 47.88 41.43 41.43
Mitsubishi 4381 49.15 4333 40.43
Average 4261 46.61 40.05 39.04

Table 5. Comparison of test error rates after a significant

financial crisis

Brands SVM RNN-RBM + DBN
Nikkei Average 51.61 38.70
Hitachi 61.29 3225
Toshiba 54.83 38.70
Fujitsu 45.16 3225
Sharp 58.06 45.16
Sony 4193 41.93

Yoshihara et al. "Leveraging temporal properties of news g s s B4
Toyota Motor 4838 45.16

events for stock market prediction." 2015. Canon 5483 5483
Mitsut 41.93 38.70
Mitsubishi 29.03 25.80
Average 46.92 39.00

I Emm  Massachusetts . Course 6.5094: Lex Fridman: Website: January
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Application: Audio Generation

Loss on validation data:

Loss on training data:
23% 29495
28
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22 26
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Information: Spectrogram (0-5 KHz):
- ——— : = ——— = é = _;—:.1
Instant Waveform
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Application: Audio Classification

B This "dry" audio is what >:’/ou're currently hearing...

1
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Current Time Offset (secs) Current Time Offset (secs)
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Reminder:

Original NVIDIA Approach to End-to-End Driving

(am

° 9 Iayers Output: vehicle control »
Fully-connected layer
* 1 normalization Fully-connected layer y
Fully-connected layer >
layer —
* 5 convolutional Seviion
layers v
e 3 fully connected papshnu
64@3x20

layers

//3 il :Ifgrnel Convolutional

feature map
48@5x22

e 27 million connections 2
5x5 kernel

- E% = Convolutional

* 250 thousand : : feature map

36@14x47

parameters

Convolutional
feature map
24@31x98

Normalized
input planes
3@66x200

Input planes
3@66x200

I 2R assachusetts Ref 1113 Course 6.5094: Lex Fridman: Website: January
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DeepTesla: End-to-End Driving with ConvnetJS

Predicted wheel: -2.5

Tutorial on http://cars.mit.edu/deeptesla

I - maﬁa::gie“s Course 6.5094: Lex Fridman: Website: Januar
I I Techln‘(‘)logy Deep Learning for Self-Driving Cars fridman@mit.edu cars.mit.edu 2017
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Self-Driving Car Engineer Nanodegree

End-to-End Driving with RNNs

UDACITY

Actual = 0.06203. Predicted = 0.07418

15t and 3" place winner of the Udacity end-to-end steering
competition used RNNs:

* Seguence-to-sequence mapping from images to steering angles.

Emm  Massachusetts Course 6.5094: Lex Fridman: Website: January
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End-to-End Driving with RNNs

(15t Place Winner: Team Komanda)

0 ®)
T A
N\ R
- — @ >
G@nb>
()
Jb

Actual = 0.08203. Predicted = 0.07418

x: 3d convolution of image sequence
h: predicted steering angle, speed, torque

Sequence length: 10

assachusetts Course 6.5094: Lex Fridman: Website:
u

ReferenceS: [1101 111] Deep Learning for Self-Driving Cars fridman@mit.edu cars.mit.edu
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End-to-End Driving with RNNs

(37 Place Winner: Team Chauffeur)

®

e D G
— >
@D
® ®
(o] @] [O]
>

Actual = -0.04887, Predicted = 0.01188 @ @

Transfer learning: stacked CNN (pruned to 3000 features)
x: 3000 features extracted with CNN
h: predicted steering angle

Sequence length: 50

I IIiI- m:ts;:tc:t;elts Refe rences: [1 10’ 1 14] Course 6.5094: Lex Fridman: Websit-e: Januar

Technology Deep Learning for Self-Driving Cars fridman@mit.edu cars.mit.edu 2017



References

All references cited in this presentation are listed in the
following Google Sheets file:

https://g00.g1/9Xhp2t

?s=

:ﬁaf:g?e“s Course 6.5094: Lex Fridman:
chln‘:)logy Deep Learning for Self-Driving Cars fridman@mit.edu

Website:
cars.mit.edu

January
2017


https://goo.gl/9Xhp2t

