

6.S094: Deep Learning for Self-Driving Cars Recurrent Neural Networks for Steering Through Time

cars.mit.edu

Massachusetts Institute of Technology References: [107] Course 6.S094: Deep Learning for Self-Driving Cars Lex Fridman: fridman@mit.edu

Website: cars.mit.edu

最专业报告分享群:

•每日分享5+科技行业报告

- 同行业匹配,覆盖人工智能、大数据、机器人、 智慧医疗、智能家居、物联网等行业。
- 高质量用户,同频的人说同样的话

扫描右侧二维码, 或直接搜索关注公众号: 智东西(zhidxcom) 回复"报告群"加入

- Website: cars.mit.edu ٠
- Email: <u>deepcars@mit.edu</u> .
- Tasks: ٠
 - Create an account on the website. ٠
 - Submit code online for DeepTrafficJS that exceeds 65mph ٠
 - Submit code online for DeepTeslaJS (no performance ٠ requirement)
 - Fill out "Deep Thoughts" in your "Edit Profile" page ٠
- Shirts: Handed out at the end of class on Friday •
- **DeepTraffic Competition:** ٠
 - Leaderboard shuts down Friday 11am ٠
 - Winners announced and congratulated on Friday ٠

DeepTraffic Leaderboard

	Deepirane - Marat Dee	DITONIC		
Rank	User		MPH	
Ť.	yufun		74,20	
2	michael_gump	= MI	74.04	
3	J5C6	PUT	73.78	
4	Jeffrey Hu	ल भार	73,59	
5	p_dolly	🗢 मह	73.50	
6	Lex Fridman	PET	73.48	
7	casbal		73,46	
8	tancik	ज्ञाम 🕿	73.45	
9	Timothy Kassis	917	73,33	
10	naveen		73,09	

Mir - MIT Affiliated # - Registered Student

Administrative

Competition Prizes:

UDACITY

Self-Driving Car Engineer Nanodegree

Top 1 (Priceless)

Website:

cars.mit.edu

Course 6.S094:	L
Deep Learning for Self-Driving Cars	fr

January 2017

lassachusetts Institute of Technology

Flavors of Neural Networks

Massachusetts Institute of Technology

References: [35]

Course 6.S094: Deep Learning for Self-Driving Cars Lex Fridman: fridman@mit.edu

Back to Basics: Backpropagation

Adjust the weights to reduce the error:

References: [63, 80, 100]

January

2017

Backpropagation: By Example

$$f(x, y, z) = (x + y)z$$

Modularity: We compute an arbitrary function locally in stages

$$q = x + y$$

$$f = qz$$

References: [101]

Lex Fridman: s fridman@mit.edu

Backpropagation: Forward Pass

$$f(x, y, z) = (x + y)z$$

f(x, y, z) is "happy" when the output is as high as possible

How do we "teach" it to produce a higher output?

References: [101]

Course 6.S094: Deep Learning for Self-Driving Cars Lex Fridman: fridman@mit.edu

Backpropagation: Forward Pass

$$f(x, y, z) = (x + y)z$$

f(x, y, z) is "happy" when the output is as high as possible

How do we "teach" it to produce a higher output?

References: [101]

Course 6.S094: Deep Learning for Self-Driving Cars Lex Fridman: fridman@mit.edu

Backpropagation: By Example

Addition:

$$f(x,y)=x+y \qquad o \qquad rac{\partial f}{\partial x}=1 \qquad rac{\partial f}{\partial y}=1$$

Multiplication:

$$f(x,y)=xy \qquad o \qquad rac{\partial f}{\partial x}=y \qquad rac{\partial f}{\partial y}=x$$

References: [101]

January

2017

Backpropagation: Backward Pass

Let's compute the local gradient on *f*:

$$rac{\partial f}{\partial q}=z_{0}$$

$$rac{\partial f}{\partial z}=q_{
m c}$$

References: [101]

Modular Magic: Chain Rule

$$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial q} \frac{\partial q}{\partial x}$$

So, instead of computing the gradient of this:

$$f(x, y, z) = (x + y)z$$

We compute the gradients of these:

$$q = x + y$$

$$f = qz$$

References: [101]

Backpropagation: Backward Pass

Let's compute the local gradient on q:

References: [101]

Course 6.S094: Deep Learning for Self-Driving Cars

Lex Fridman: fridman@mit.edu

Forward pass in blue Backward pass in red

Interpreting Gradients

* Note the beautiful **simplicity**:

Every local gradient is a local worker in a global chase for greater *f*.

Forward pass in blue Backward pass in red

Interpreting Gradients

Add gate:

- Equally distributes the gradient from output to input
- Ignores forward pass values

Multiply gate:

- Switch forward pass values
- Multiply by gradient on output

January

2017

Forward pass in green Backward pass in red

Interpreting Gradients

Add gate:

- Equally distributes the gradient from output to input
- Ignores forward pass values

Multiply gate:

- Switch forward pass values
- Multiply by gradient on output

Max gate:

 Distributes the gradient from output to just one input (the one with the largest forward pass value)

Forward pass in green Backward pass in red

Interpreting Gradients

Add gate:

- Equally distributes the gradient from output to input
- Ignores forward pass values

Multiply gate:

- Switch forward pass values
- Multiply by gradient on output

Max gate:

 Distributes the gradient from output to just one input (the one with the largest forward pass value)

Side note, the derivative of the sigmoid function simplifies to:

$$rac{d\sigma(x)}{dx} \,{=}\, (1 - \sigma(x))\,\sigma(x)$$

Website:

References: [101]

Course 6.S094: **Deep Learning for Self-Driving Cars** Lex Fridman: fridman@mit.edu

January cars.mit.edu 2017

Learning with Backpropagation

Task: Update the weights and biases to decrease loss function

Subtasks:

- 1. Forward pass to compute network output and "error"
- 2. Backward pass to compute gradients
- A fraction of the weight's gradient is subtracted from the weight.

 1 Learning Rate

January

2017

Learning is an Optimization Problem

Task: Update the weights and biases to decrease loss function

Use mini-batch or stochastic gradient descent.

References: [103]

Course 6.S094: Deep Learning for Self-Driving Cars Lex Fridman: fridman@mit.edu

Optimization is Hard: Vanishing Gradients

Partial derivatives are small = Learning is slow

References: [102]

Course 6.S094:Lex Fridman:Website:Deep Learning for Self-Driving Carsfridman@mit.educars.mit.edu

Optimization is Hard: Dying ReLUs

- If a neuron is initialized poorly, it might not fire for entire training dataset.
- Large parts of your network could be dead ReLUs!

January

2017

Optimization is Hard: Saddle Point

Hard to break symmetry

Learning is an Optimization Problem

Takeaway: Vanilla SGD gets your there, but is slow sometimes.

References: [104]

Course 6.S094: Deep Learning for Self-Driving Cars Lex Fridman: fridman@mit.edu

Reflections on Backpropagation

 Pause to reflect: Backpropagation and gradient descent is the mechanism of machine intelligence. Can it lead to "human-level reasoning"?

- Some alternatives:
 - Genetic Algorithms
 - Particle Swarm Optimization
 - Ant Colony Optimization

• **Q1:** What other ways can we optimize the weights of a neural network?

Corucci et al. "Evolving swimming soft-bodied creatures." 2016.

• **Q2:** What other ways can we optimize (evolve) the design of the network?

stitute of

Back to Recurrent Neural Networks (RNNs)

References: [35]

assachusetts

Institute of

Fechnology

Course 6.S094: Deep Learning for Self-Driving Cars Lex Fridman: fridman@mit.edu Website: cars.mit.edu

Unrolling a Recurrent Neural Network

- Input (x): (example: word of a sentence)
- Hidden state (s): function of previous hidden state and new input
 - **Output** (o): (example: predict next word in the sentence)

Memory

RNN Observations

- Parameters U, V, W are shared across time
 - Similar to CNNs: this reduces the # of parameters we need to optimize
 - And it allow us to process arbitrary "temporal size" of input
- Process is the same for any input / output mapping:

References: [35, 107]

Backpropagation Through Time (BPTT)

(Fancy name for regular backpropagation on an unrolled RNN)

Saturating Neurons with Vanishing Gradients:

Zero-ish gradients drives gradients in earlier layers to zero.

References: [112]

Course 6.S094:Lex Fridman:Website:JanuaryDeep Learning for Self-Driving Carsfridman@mit.educars.mit.edu2017

Gradients Can Explode or Vanish

References: [102, 107]

Lex Fridman: fridman@mit.edu

Geometric Interpretation)

Error surface for single hidden unit RNN $x_t = w\sigma(x_{t-1}) + b$

References: [108]

Lex Fridman: fridman@mit.edu

RNN Variants: Bidirectional RNNs

(Shallow)

(Deep)

- Example:
 - Filling in missing words
- Deeper =
 - more learning capacity
 - but needs lots of training data

Long-Term Dependency

- Short-term dependence:
 Bob is eating an apple.
- Long-term dependence:

Context ------ Bob likes apples. He is hungry and decided to have a snack. So now he is eating an apple.

In theory, vanilla RNNs can handle arbitrarily long-term dependence.

In practice, it's difficult.

Website:

cars.mit.edu

References: [109]

Long Short Term Memory (LSTM) Networks

References: [109]

Course 6.S094: Deep Learning for Self-Driving Cars

Lex Fridman: fridman@mit.edu

LSTM: Gates Regulate

Neural Network Pointwise Vector Layer Operation Transfer Concatenate Copy

References: [109]

Course 6.S094: Deep Learning for Self-Driving Cars

Lex Fridman: fridman@mit.edu

LSTM: Pick What to Forget and What To Remember

Bob and Alice are having lunch. Bob likes apples. Alice likes oranges. She is eating an orange.

Conveyer belt for **previous state** and **new data**:

- 1. Decide what to forget (state)
- 2. Decide what to remember (state)
- 3. Decide what to output (if anything)

Massachusetts

Institute of

Technology

- State run through the cell
- 3 sigmoid layers output deciding which information is let through (~1) and which is not (~0)

$$f_t = \sigma \left(W_f \cdot [h_{t-1}, x_t] + b_f \right)$$

Step 1: Decide what to forget / ignore

References: [109]

Course 6.S094: Deep Learning for Self-Driving Cars Lex Fridman: fridman@mit.edu

Website: cars.mit.edu

$$i_t = \sigma \left(W_i \cdot [h_{t-1}, x_t] + b_i \right)$$
$$\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C)$$

Step 2: Decide which state values to update (w/ sigmoid) and what values to update with (w/ tanh)

 $C_t = f_t * C_{t-1} + i_t * \tilde{C}_t$

Step 3: Perform the forgetting and the state update

$$o_t = \sigma \left(W_o \left[h_{t-1}, x_t \right] + b_o \right)$$
$$h_t = o_t * \tanh \left(C_t \right)$$

Step 4: Produce output with tanh [-1, 1] deciding the values and sigmoid [0, 1] deciding the filtering

Application: Machine Translation

References: [107]

Application: Handwriting Generation from Text

Application: Character-Level Text Generation

Life Is About The Weather! Life Is About The True Love Of Mr. Mom Life Is About Kids Life Is About An Eating Story Life Is About The Truth Now

The meaning of life is literary recognition

The meaning of life is the tradition of the ancient human reproduction

Andrej Karpathy. "The Unreasonable Effectiveness of Recurrent Neural Networks." (2015).

lassachusetts

Institute of

Fechnology

Application: Image Question Answering

COCOQA 33827 What is the color of the cat? Ground truth: black IMG+BOW: black (0.55) 2-VIS+LSTM: black (0.73) BOW: gray (0.40)

COCOQA 33827a What is the color of the couch? Ground truth: red IMG+BOW: red (0.65) 2-VIS+LSTM: black (0.44) BOW: red (0.39)

lassachusetts

Institute of

Technology

DAQUAR 1522 How many chairs are there? Ground truth: two IMG+BOW: four (0.24) 2-VIS+BLSTM: one (0.29) LSTM: four (0.19)

DAQUAR 1520 How many shelves are there? Ground truth: three IMG+BOW: three (0.25) 2-VIS+BLSTM: two (0.48) LSTM: two (0.21)

COCOQA 14855 Where are the ripe bananas sitting? Ground truth: basket IMG+BOW: basket (0.97) 2-VIS+BLSTM: basket (0.58) BOW: bowl (0.48)

COCOQA 14855a What are in the basket? Ground truth: bananas IMG+BOW: bananas (0.98) 2-VIS+BLSTM: bananas (0.68) BOW: bananas (0.14)

DAQUAR 585 What is the object on the chair? Ground truth: pillow IMG+BOW: clothes (0.37) 2-VIS+BLSTM: pillow (0.65) LSTM: clothes (0.40)

DAQUAR 585a Where is the pillow found? Ground truth: chair IMG+BOW: bed (0.13) 2-VIS+BLSTM: chair (0.17) LSTM: cabinet (0.79)

January

2017

Ren et al. "Exploring models and data for image question answering." 2015.

Code: https://github.com/renmengye/imageqa-public

References: [40]

Course 6.S094:Lex Fridman:Website:Deep Learning for Self-Driving Carsfridman@mit.educars.mit.edu

Application: Image Caption Generation

a man sitting on a couch with a dog a man sitting on a chair with a dog in his lap

Course 6.S094: Deep Learning for Self-Driving Cars Lex Fridman: fridman@mit.edu

Application: Video Description Generation

Correct descriptions.

S2VT: A man is doing stunts on his bike.

S2VT: A herd of zebras are walking in a field.

Relevant but incorrect descriptions.

S2VT: A small bus is running into a building.

S2VT: A man is cutting a piece of a pair of a paper.

Venugopalan et al.

"Sequence to sequence-video to text." 2015.

Code: https://vsubhashini.github.io/s2vt.html

References: [41, 42]

Application: Modeling Attention Steering

Jimmy Ba, Volodymyr Mnih, and Koray Kavukcuoglu. "Multiple object recognition with visual attention." (2014).

References: [35, 36]

Course 6.S094: Lex Frid Deep Learning for Self-Driving Cars fridman

Lex Fridman: fridman@mit.edu

Website: cars.mit.edu

Application: Drawing with Selective Attention

Reading

Writing

Gregor et al. "DRAW: A recurrent neural network for image generation." (2015).

Code: https://github.com/ericjang/draw

Website: fridman@mit.edu cars.mit.edu

Application: Adding Audio to Silent Film

Silent video

Owens, Andrew, Phillip Isola, Josh McDermott, Antonio Torralba, Edward H. Adelson, and William T. Freeman. "Visually Indicated Sounds." (2015).

References: [28, 29]

Course 6.S094: Deep Learning for Self-Driving Cars

Lex Fridman: fridman@mit.edu

Website: cars.mit.edu

Application: Medical Diagnosis

- Input: patients electronic health record (EHR) data over multiple visits (meaning, variable length sequences)
- Output: 128 diagnoses

Top 6 diagnoses measured by F1 score

Label	F1	AUC	Precision	Recall
Diabetes mellitus with ketoacidosis	0.8571	0.9966	1.0000	0.7500
Scoliosis, idiopathic	0.6809	0.8543	0.6957	0.6667
Asthma, unspecified with status asthmaticus	0.5641	0.9232	0.7857	0.4400
Neoplasm, brain, unspecified	0.5430	0.8522	0.4317	0.7315
Delayed milestones	0.4751	0.8178	0.4057	0.5733
Acute Respiratory Distress Syndrome (ARDS)	0.4688	0.9595	0.3409	0.7500

Lipton et al. "Learning to diagnose with LSTM recurrent neural networks." (2015).

14117	Massachusetts Institute of Technology
-------	---

Application: Stock Market Prediction

Brands	Baseline	SVM	DBN	RNN-RB M + DBN	
Nikkei Average	49.57	48.73	45.50	43.62	
Hitachi	35.71	37.29	32.00	32.00	
Toshiba	39.52	41.95	38.50	38.50	
Fujitsu	40.00	40.25	32.00	34.00	
Sharp	42.00	47.88	40.00	40.00	
Sony	43.00	47.46	41.43	40.95	
Nissan Motor	40.00	45.34	39.50	37.00	
Toyota Motor	44.29	53. <mark>3</mark> 9	43.81	42.38	
Canon	43.81	53.39	43.00	39.11	
Mitsui	46.96	47.88	41.43	41.43	
Mitsubishi	43.81	49.15	43.33	40.43	
Average	42.61	46.61	40.05	39.04	

Table 5.	Comparison o	f test	error	rates	after	a	significant
financial	crisis						

Brands	SVM	RNN-RBM + DBN
Nikkei Average	51.61	38.70
Hitachi	61.29	32.25
Toshiba	54.83	38.70
Fujitsu	45.16	32.25
Sharp	58.06	45.16
Sony	41.93	41.93
Nissan Motor	29.03	35.48
Toyota Motor	48.38	45.16
Canon	54.83	54.83
Mitsui	41.93	38.70
Mitsubishi	29.03	25.80
Average	46.92	39.00

Yoshihara et al. "Leveraging temporal properties of news events for stock market prediction." 2015.

Massachusetts Institute of Technology References: [116]

Course 6.S094: Deep Learning for Self-Driving Cars Lex Fridman: fridman@mit.edu Website: cars.mit.edu

Application: Audio Generation

(Using Torch-RNN, which is a more efficient fork of Char-RNN)

Massachusetts		Course 6 5004	Lov Fridman	Mahaita		
	Institute of	References [117]	Course 6.5094:	Lex Friuman:	website:	January
Technology		Deep Learning for Self-Driving Cars	fridman@mit.edu	cars.mit.edu	2017	

Application: Audio Classification

References: [131]

Course 6.S094: Deep Learning for Self-Driving Cars Lex Fridman: fridman@mit.edu Website: cars.mit.edu

Reminder: Original NVIDIA Approach to End-to-End Driving

- 9 layers
 - 1 normalization layer
 - 5 convolutional layers
 - 3 fully connected layers
- 27 million connections
- 250 thousand parameters

References: [113]

Lex Fridman: fridman@mit.edu

January

2017

DeepTesla: End-to-End Driving with ConvnetJS

Tutorial on http://cars.mit.edu/deeptesla

Course 6.S094: Deep Learning for Self-Driving Cars Lex Fridman: fridman@mit.edu

End-to-End Driving with RNNs

1st and 3rd place winner of the Udacity end-to-end steering competition used RNNs:

• Sequence-to-sequence mapping from images to steering angles.

End-to-End Driving with RNNs

(1st Place Winner: Team Komanda)

x: 3d convolution of image sequence
h: predicted steering angle, speed, torque
Sequence length: 10

End-to-End Driving with RNNs

(3rd Place Winner: Team Chauffeur)

Transfer learning: stacked CNN (pruned to 3000 features)
x: 3000 features extracted with CNN
h: predicted steering angle
Sequence length: 50

January

2017

References

All references cited in this presentation are listed in the following Google Sheets file:

https://goo.gl/9Xhp2t

